PM

$$
\begin{array}{l} \\ \qquad \text { Mark Scheme } 4755 \\ \text { June } 2006\end{array}
$$

PM

$$
\begin{array}{l} \\ \qquad \text { Mark Scheme } 4755 \\ \text { June } 2006\end{array}
$$

元
Mark Scheme 4755
June 2006
Mark Scheme 4755
June 2006

.

-

.
Mark Scheme 4755
June 2006
\square
-
(
(

(
(

-

\square

正
0

-
\square

\begin{tabular}{|c|c|c|c|}
\hline Qu \& Answer \& Mark \& Comment \\
\hline \multicolumn{4}{|l|}{Section A} \\
\hline 1 (i)
1(ii)
1(iii) \& Reflection in the \(x\)-axis.
\[
\begin{aligned}
\& \left(\begin{array}{cc}
0 \& -1 \\
1 \& 0
\end{array}\right) \\
\& \left(\begin{array}{cc}
1 \& 0 \\
0 \& -1
\end{array}\right)\left(\begin{array}{cc}
0 \& -1 \\
1 \& 0
\end{array}\right)=\left(\begin{array}{cc}
0 \& -1 \\
-1 \& 0
\end{array}\right)
\end{aligned}
\] \& \[
\begin{gathered}
\mathrm{B} 1 \\
{[1]} \\
\\
\mathrm{B} 1 \\
{[1]} \\
\mathrm{M} 1 \\
\\
\mathrm{~A} 1 \\
\text { c.a.o. } \\
{[2]} \\
\hline
\end{gathered}
\] \& Multiplication of their matrices in the correct order or B2 for correct matrix without working \\
\hline 2 \& \[
\begin{aligned}
\& (x+2)\left(A x^{2}+B x+C\right)+D \\
\& =A x^{3}+B x^{2}+C x+2 A x^{2}+2 B x+2 C+D \\
\& =A x^{3}+(2 A+B) x^{2}+(2 B+C) x+2 C+D \\
\& \Rightarrow A=2, B=-7, C=15, D=-32
\end{aligned}
\] \& \begin{tabular}{l}
M1 \\
B1 \\
B1 \\
F1 \\
F1 \\
OR \\
B5 \\
[5]
\end{tabular} \& \begin{tabular}{l}
Valid method to find all coefficients \\
For \(A=2\) \\
For \(D=-32\) \\
F1 for each of \(B\) and \(C\) \\
For all correct
\end{tabular} \\
\hline 3(i)

3(ii) \& $$
\alpha+\beta+\gamma=-4
$$

$$
\alpha \beta+\beta \gamma+\alpha \gamma=-3
$$

$$
\alpha \beta \gamma=-1
$$

\[
$$
\begin{aligned}
& \alpha^{2}+\beta^{2}+\gamma^{2}=(\alpha+\beta+\gamma)^{2}-2(\alpha \beta+\beta \gamma+\alpha \gamma) \\
& =16+6=22
\end{aligned}
$$

\] \& | B1 |
| :--- |
| B1 |
| B1 |
| [3] |
| M1 |
| A1 |
| E1 |
| [3] | \& | Attempt to use $(\alpha+\beta+\gamma)^{2}$ |
| :--- |
| Correct |
| Result shown | \\

\hline 4 (i)

4(ii) \& Argand diagram with solid circle, centre $3-\mathrm{j}$, radius 3, with values of z on and within the circle clearly indicated as satisfying the inequality. \& \begin{tabular}{l}
B1 \\
B1 \\
B1 \\
[3] \\
B1 \\
B1 \\
[2]

 \&

Circle, radius 3, shown on diagram \\
Circle centred on 3 - j \\
Solution set indicated (solid circle with region inside) \\
Hole, radius 1, shown on diagram Boundaries dealt with correctly
\end{tabular} \\

\hline
\end{tabular}

Section B Total: 36
Total: 72

