Mark Scheme 4755 June 2006

	Mark Scheme June 2006					
Qu	Answer	Mark	Comment			
Section	Section A					
1 (i)	Reflection in the <i>x</i> -axis.	B1 [1]				
1(ii)	$\begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$	B1 [1]				
1(iii)	$ \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} = \begin{pmatrix} 0 & -1 \\ -1 & 0 \end{pmatrix} $	M1 A1 c.a.o.	Multiplication of their matrices in the correct order or B2 for correct matrix without working			
2	$(x+2)(Ax^{2} + Bx + C) + D$ $= Ax^{3} + Bx^{2} + Cx + 2Ax^{2} + 2Bx + 2C + D$ $= Ax^{3} + (2A+B)x^{2} + (2B+C)x + 2C + D$	[2] M1	Valid method to find all coefficients			
	$\Rightarrow A = 2, B = -7, C = 15, D = -32$	B1 B1 F1 F1 OR B5	For A = 2 For D = -32 F1 for each of B and C For all correct			
		[5]	. 3. 411 3311331			
3(i)	$\alpha + \beta + \gamma = -4$	B1				
	$\alpha\beta + \beta\gamma + \alpha\gamma = -3$	B1				
	$\alpha\beta + \beta\gamma + \alpha\gamma = -3$ $\alpha\beta\gamma = -1$	B1 [3]				
3(ii)	$\alpha^{2} + \beta^{2} + \gamma^{2} = (\alpha + \beta + \gamma)^{2} - 2(\alpha\beta + \beta\gamma + \alpha\gamma)$ $= 16 + 6 = 22$	M1 A1 E1 [3]	Attempt to use $(\alpha + \beta + \gamma)^2$ Correct Result shown			
4 (i)	Argand diagram with solid circle, centre $3 - j$, radius 3, with values of z on and within the circle clearly indicated as satisfying the inequality.	B1 B1 B1	Circle, radius 3, shown on diagram Circle centred on 3 - j Solution set indicated (solid circle			
4(ii)		[3]	with region inside)			
7(11)	In (2 lie in the shaded annulus including the country but auduling the inner)	B1 B1 [2]	Hole, radius 1, shown on diagram Boundaries dealt with correctly			

Qu	Answer	Mark	Comment
Section	on A (continued)		
4(iii)	Im	B1 B1	Line through their 3 – j Half line
		B1	$\frac{\pi}{4}$ to real axis
	3-j R	[3]	
5(i)	$ \begin{pmatrix} -1 & 2 \\ -3 & 4 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \end{pmatrix} $ $ \mathbf{S}^{-1} = \frac{1}{2} \begin{pmatrix} 4 & -2 \\ 3 & -1 \end{pmatrix} $	B1	
	$\mathbf{S}^{-1} = \frac{1}{2} \begin{pmatrix} 4 & -2 \\ 3 & -1 \end{pmatrix}$	M1,	Attempt to divide by determinant and manipulate contents
		A1	Correct
	$ \frac{1}{2} \begin{pmatrix} 4 & -2 \\ 3 & -1 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \end{pmatrix} $	E1	
		[4]	
5(ii)	$\mathbf{T} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} x \\ y \end{pmatrix}$		
	$\Rightarrow \mathbf{T}^{-1}\mathbf{T} \begin{pmatrix} x \\ y \end{pmatrix} = \mathbf{T}^{-1} \begin{pmatrix} x \\ y \end{pmatrix}$	M1	Pre-multiply by \mathbf{T}^{-1}
	$\Rightarrow \begin{pmatrix} x \\ y \end{pmatrix} = \mathbf{T}^{-1} \begin{pmatrix} x \\ y \end{pmatrix}$		
		A1 [2]	Invariance shown
6	$3+6+12+\dots+3\times 2^{n-1}=3(2^n-1)$		
	n = 1, LHS = 3, RHS = 3	B1	
	Assume true for $n = k$ Next term is $3 \times 2^{k+1-1} = 3 \times 2^k$ Add to both sides	E1 B1	Assuming true for k $(k+1)^{th}$ term.
	$RHS = 3(2^k - 1) + 3 \times 2^k$	M1	Add to both sides
	$=3\left(2^{k}-1+2^{k}\right)$		
	$=3(2\times 2^k-1)$		
	$=3\left(2^{k+1}-1\right)$	A1	Working must be valid
	But this is the given result with $k + 1$ replacing k . Therefore if it is true for k it is	E1	Dependent on previous A1 and E1
	true for $k + 1$. Since it is true for $k = 1$, it is true for all positive integers n .	E1 [7]	Dependent on B1 and previous E1
			Section A Total: 36

Section B				
7(i)	x = 2, $x = -1$ and $y = 1$	B1	One mark for each	
		B1B1 [3]		
7(ii)				
(A)	Large positive $x, y \rightarrow 1^+$ (from above)			
	(e.g. consider $x = 100$)	M1	Evidence of method needed for M1	
(B)	Large negative $x, y \rightarrow 1^-$ (from below)	B1 B1	IVII	
	(e.g. consider $x = -100$)	[3]		
7 (iii)	,			
	Curve	D4		
	3 branches	B1	With correct approaches to	
	Correct approaches to horizontal	B1	vertical asymptotes	
	asymptote	B1	Consistent with their (i) and (ii)	
	Asymptotes marked	B1	Equations or values at axes clear	
	Through origin	[4]		
	x=-(x=2			
7(iv)	x < -1, x > 2	B1B1, B1, [3]	s.c. 1 for inclusive inequalities Final B1 for all correct with no other solutions	

4755 **Mark Scheme** June 2006 8(i) $(2+i)^2 = 3+4i$ B1 $(2+i)^3 = 2+11i$ B1 Attempt at substitution M1 Substituting into $2x^3 - 11x^2 + 22x - 15$: 2(2+11i)-11(3+4i)+22(2+i)-15Correctly substituted **A**1 = 4 + 22i - 33 - 44i + 44 + 22i - 15A1 Correctly cancelled =0(Or other valid methods) So 2 + j is a root. [5] B1 **8(ii)** 2 - i[1] **8(iii)** (x-(2+i))(x-(2-i))Use of factor theorem M1 =(x-2-j)(x-2+j) $= x^{2} - 2x + jx - 2x + 4 - 2j - jx + 2j + 1$ **A**1 $= x^2 - 4x + 5$ $(x^2 - 4x + 5)(ax + b) = 2x^3 - 11x^2 + 22x - 15$ Comparing coefficients or long M1 division

 $(x^2 - 4x + 5)(2x - 3) = 2x^3 - 11x^2 + 22x - 15$

$$(2x-3) = 0 \Rightarrow x = \frac{3}{2}$$

OR

Sum of roots = $\frac{11}{2}$ or product of roots = $\frac{15}{2}$ leading to

$$\alpha + 2 + \mathbf{j} + 2 - \mathbf{j} = \frac{11}{2}$$

$$\Rightarrow \alpha = \frac{3}{2}$$

 $\alpha(2+j)(2-j) = \frac{15}{2}$ $\Rightarrow 5\alpha = \frac{15}{2} \Rightarrow \alpha = \frac{3}{2}$

A1 Correct third root [4]

A1 M1

M1

A1 [4]

> M1 **A**1

> > [4]

M1 (Or other valid methods) **A**1

4755 Mark Scheme June 2006

4/33	Mark Scheme		Julie 2006
9(i)	$r(r+1)(r+2) - (r-1)r(r+1)$ $\equiv (r^2 + r)(r+2) - r^3 - r$ $\equiv r^3 + 2r^2 + r^2 + 2r - r^3 + r$	M1	Accept '=' in place of '≡' throughout working
	$\equiv 3r^2 + 3r \equiv 3r(r+1)$	E1 [2]	Clearly shown
9(ii)	$\sum_{r=1}^{n} r(r+1)$		
	$= \frac{1}{3} \sum_{r=1}^{n} \left[r(r+1)(r+2) - (r-1)r(r+1) \right]$	M1	Using identity from (i)
	$ = \frac{1}{3} [(1 \times 2 \times 3 - 0 \times 1 \times 2) + (2 \times 3 \times 4 - 1 \times 2 \times 3) + (3 \times 4 \times 5 - 2 \times 3 \times 4) + \dots + (n(n+1)(n+2) - (n-1)n(n+1))] $	M1 A2	Writing out terms in full At least 3 terms correct (minus 1 each error to minimum of 0)
9(iii)	$= \frac{1}{3}n(n+1)(n+2) \text{ or equivalent}$	M1 A1 [6]	Attempt at eliminating terms (telescoping) Correct result
)(III)	$\sum_{r=1}^{n} r(r+1) = \sum_{r=1}^{n} r^{2} + \sum_{r=1}^{n} r$		
	$= \frac{1}{6}n(n+1)(2n+1) + \frac{1}{2}n(n+1)$	D.1	Use of standard sums (1 mark
	$= \frac{1}{6}n(n+1)[(2n+1)+3]$	B1 B1 M1	each)
	$= \frac{1}{6}n(n+1)(2n+4)$ $= \frac{1}{3}n(n+1)(n+2) \text{ or equivalent}$	A1	Attempt to combine
	$= \frac{1}{3}n(n+1)(n+2) \text{ or equivalent}$	E1	Correctly simplified to match result from (ii)
		[5]	Section B Total: 36

Section B Total: 36

Total: 72